Step 1

line passing through point

\(\displaystyle{\left({15},{16}\right)}{\quad\text{and}\quad}{\left({30},{25}\right)}\)

The equation of line is given by

\(\displaystyle{\frac{{{x}-{15}}}{{{30}-{15}}}}={\frac{{{y}-{16}}}{{{25}-{16}}}}\)

\(\displaystyle{\frac{{{x}-{15}}}{{{15}}}}={\frac{{{y}-{16}}}{{{9}}}}\)

\(\displaystyle{x}-{15}={\frac{{{5}}}{{{3}}}}{y}-{16}\)

\(\displaystyle{3}{x}-{45}={5}{y}-{80}\)

\(\displaystyle{3}{x}+{35}={5}{y}\)

\(\displaystyle{y}={\frac{{{3}}}{{{5}}}}{x}+{7}\)

\(\displaystyle{y}={0.6}{x}+{7}\)

Step 2

a) Complete box.

\(\begin{array}{|c|c|} \hline x&y\\ \hline 0&7\\ \hline 15&16\\ \hline 30&25\\ \hline \end{array}\)

b) Report line in slope-intercept form \(\displaystyle{y}={0.6}{x}+{7}\).